Deep-sea corals have long been regarded as cold-water coral; however a reevaluation
of their habitat limitations has been suggested after the discovery of
deep-sea coral in the Red Sea where temperatures exceed 20˚C. To gain further
insight into the biology of deep-sea corals at these temperatures, the work in this
PhD employed a holotranscriptomic approach, looking at coral animal host and
bacterial symbiont gene expression in Dendrophyllia sp., Eguchipsammia fistula, and
Rhizotrochus sp. sampled from the deep Red Sea. Bacterial community composition
was analyzed via amplicon-based 16S surveys and cultured bacterial strains were
subjected to bioprospecting in order to gauge the pharmaceutical potential of coralassociated
microbes.
Coral host transcriptome data suggest that coral can employ mitochondrial
hypometabolism, anaerobic glycolysis, and surface cilia to enhance mass transport
rates to manage the low oxygen and highly oligotrophic Red Sea waters. In the
microbial community associated with these corals, ribokinases and retron-type
reverse transcriptases are abundantly expressed. In its first application to deep-sea
coral associated microbial communities, 16S-based next-generation sequencing
found that a single operational taxonomic unit can comprise the majority of
sequence reads and that a large number of low abundance populations are present,
which cannot be visualized with first generation sequencing. Bioactivity testing of
selected bacterial isolates was surveyed over 100 cytological parameters with high content screening, covering several major organelles and key proteins involved in a
variety of signaling cascades. Some of these cytological profiles were similar to
those of several reference pharmacologically active compounds, which suggest that
the bacteria isolates produce compounds with similar mechanisms of action as the
reference compounds.
The sum of this work offers several mechanisms by which Red Sea deep-sea corals
cope with environmental conditions in which no other deep-sea corals have yet to
be reported. These deep-sea coral are associated with rich microbial communities,
which produce molecules that induce bioactivity. The aggregate of this work
provides direction for future research of Red Sea deep-sea coral and highlights the
potential pharmacological benefit of conserving these species and their unique
ecosystem.
Date of Award | Dec 2014 |
---|
Original language | English (US) |
---|
Awarding Institution | - Biological, Environmental Sciences and Engineering
|
---|
Supervisor | Christian Voolstra (Supervisor) |
---|
- Deep-Sea Coral
- Red Sea
- Transcriptome
- bacterial community
- Metatranscriptome
- Eguchipsammia Fistula