Solution-processed organic field effect transistors (OFETs) have emerged in recent years as promising contenders to be part of electronic and optoelectronic circuits owing to their compatibility with low-cost high throughput roll-to-roll manufacturing technology. The stringent performance requirements for OFETs in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require the performance of single crystal-based OFETs, but these suffer from major scale-up challenges.
To achieve device performance approaching that of single crystals with scalable, high throughput and industry-compatible solution coating of OFETs requires understanding and ultimately controlling the crystallization of organic semiconductors (OSCs), and producing very low defect-density thin films. In this thesis, we develop an understanding of the process-structure-property-performance relationship in OSCs that bring fresh insights into the nature of solution crystallization and lead to novel ways to control OSC crystallization, and finally help achieve fabrication of high-performance OFETs by scalable, high throughput and industry-compatible blade coating method. We probe the solution crystallization of OSCs by employing a suite of ex & in situ characterization techniques. This leads us to an important finding that OSC molecules aggregate to form a dense amorphous intermediate state and nucleation happens from this intermediate state during blade coating under a wide window of coating conditions.
This phenomenon resembles the so-called two-step nucleation model. Two-step nucleation mediates the crystallization of a wide range of natural and synthetic products ranging from soft materials, such as proteins, biominerals, colloids and pharmaceutical molecules, to inorganic compounds. We go on to show that this nucleation mechanism is generally applicable to achieve formation of high-quality polycrystalline films in a variety of small molecule OSCs and their polymer blends. This phenomenon results in highly textured and well-connected domains, which exhibit reduced interfacial and bulk trap-state densities, helping raise the carrier mobility by one to two orders of magnitude in OFETs in comparison to direct nucleation. We extend the understanding developed for solution crystallization of various acenes and thiophene-based small molecule OSCs to the high-performance benzothieno-benzothiophene (BTBT) based small molecule OSCs. On this end, we develop protocols to fabricate high-quality thin films of BTBT based OSCs by blade coating at industrially compatible coating speeds (>100 mms-1). These films show massive single-domains with very few apparent defects when crystallized via multiple liquid-crystalline phases in two-step nucleation conditions, resulting in an average carrier mobility of ~10 cm2V-1s-1.
To sum up, this thesis develops an understanding of OSC solution crystallization and efficient protocols to control polycrystalline thin film quality for high-performance OFETs. These protocols involve a combination of two-step nucleation pathway, solvent mixtures, polymer blends and device-manufacturing conditions. Our efforts enable to realize high-performance OFETs based on high-quality polycrystalline OSC thin films at industry-compatible conditions.
Date of Award | May 2018 |
---|
Original language | English (US) |
---|
Awarding Institution | - Physical Sciences and Engineering
|
---|
Supervisor | Aram Amassian (Supervisor) |
---|
- Organic Semiconductors (OSCs)
- Organic Field Effect Transistors (OFETs)
- Crystalization
- In situ Diagnostics
- GIWAXS
- Blade Coating