The demand for wireless communication is ceaselessly increasing in terms of the
number of subscribers and services. Future generations of cellular networks are expected to allow not only humans but also machines to be immersively connected.
However, the radio frequency spectrum is already fully allocated. Therefore, developing
techniques to increase spectrum efficiency has become necessary. This dissertation
analyzes two spectrum sharing techniques that enable efficient utilization of the available radio resources in cellular networks. The first technique, called full-duplex (FD) communication, uses the same spectrum to transmit and receive simultaneously. Using stochastic geometry tools, we derive a closed-form expression of an upper-bound for the maximum achievable uplink ergodic rate in FD cellular networks. We show that the uplink transmission is vulnerable to the new interference introduced by FD
communications (interference from the downlink transmission in other cells), especially when the disparity in transmission power between the uplink and downlink
is considerable. We further show that adjusting the uplink transmission power according to the interference power level and the channel gain can improve the uplink
performance in full-duplex cellular networks. Moreover, we propose an interference
management technique that allows a flexible overlap between the spectra occupied by
the downlink and uplink transmissions. The flexible overlap is optimized along with
the user-to-base station association, the power allocation and the channel allocation
in order to maximize a network-wide utility function. The second spectrum sharing
technique, called non-orthogonal multiple access (NOMA), allows a transmitter to
communicate with multiple receivers through the same frequency-time resource unit.
We analyze the implementation of such a scheme in the downlink of cellular networks,
more precisely, in the downlink of fog radio access networks (FogRANs). FogRAN
is a network architecture that takes full advantage of the edge devices capability to
process and store data. We propose managing the interference for NOMA-based FogRAN to improve the network performance by jointly optimizing user scheduling, the
power allocated to each resource block and the division of power between the multiplexed users. The simulation results show that significant performance gains can
be achieved through proper resource allocation with both studied spectrum sharing techniques.
Date of Award | Aug 2019 |
---|
Original language | English (US) |
---|
Awarding Institution | - Computer, Electrical and Mathematical Sciences and Engineering
|
---|
Supervisor | Mohamed-Slim Alouini (Supervisor) |
---|
- 5G and beyond
- wireless communication
- full-duplex communication
- NOMA
- interference management
- stochastic geometry