Testing the Feasibility of Using PERM to Apply Scattering-Angle Filtering in the Image-Domain for FWI Applications

  • Hani Ataiq Alzahrani

Student thesis: Master's Thesis


Full Waveform Inversion (FWI) is a non-linear optimization problem aimed to estimating subsurface parameters by minimizing the misfit between modeled and recorded seismic data using gradient descent methods, which are the only practical choice because of the size of the problem. Due to the high non-linearity of the problem, gradient methods will converge to a local minimum if the starting model is not close to the true one. The accuracy of the long-wavelength components of the initial model controls the level of non-linearity of the inversion. In order for FWI to converge to the global minimum, we have to obtain the long wavelength components of the model before inverting for the short wavelengths. Ultra-low temporal frequencies are sensitive to the smooth (long wavelength) part of the model, and can be utilized by waveform inversion to resolve that part. Unfortunately, frequencies in this range are normally missing in field data due to data acquisition limitations. The lack of low frequencies can be compensated for by utilizing wide-aperture data, as they include arrivals that are especially sensitive to the long wavelength components of the model. The higher the scattering angle of a 5 recorded event, the higher the model wavelength it can resolve. Based on this property, a scattering-angle filtering algorithm is proposed to start the inversion process with events corresponding to the highest scattering angle available in the data, and then include lower scattering angles progressively. The large scattering angles will resolve the smooth part of the model and reduce the non-linearity of the problem, then the lower ones will enhance the resolution of the model. Recorded data is first migrated using Pre-stack Exploding Reflector Migration (PERM), then the resulting pre-stack image is transformed into angle gathers to which an angle filtering process is applied to remove events below a certain cut-off angle. The filtered pre-stack image cube is then demigrated (forward modeled) to produce filtered surface data that can be used in waveform inversion. Numerical tests confirm the feasibility of the proposed filtering algorithm. However, the accuracy of the filtered section is limited by PERM’s singularity for horizontally-traveling waves, which in turn is dependent on the velocity model used for migration and demigration
Date of AwardSep 2014
Original languageEnglish (US)
Awarding Institution
  • Physical Sciences and Engineering
SupervisorTariq Ali Alkhalifah (Supervisor)


  • PERM
  • Exploring Reflector
  • Angel Filtering
  • FWI
  • Seismic Inversion

Cite this