Animal and plant genomes produce numerous small RNAs (smRNAs) that regulate gene
expression post-transcriptionally affecting metabolism, development, and epigenetic
inheritance. In order to characterize the repertoire of endogenous microRNAs and
potential gene targets, we conducted smRNA and mRNA expression profiling over nine
experimental treatments of cultures from the dinoflagellate Symbiodinium sp. A1, a
photosynthetic symbiont of scleractinian corals. We identified a total of 75 novel
smRNAs in Symbiodinum sp. A1 that share stringent key features with functional
microRNAs from other model organisms. A subset of 38 smRNAs was predicted
independently over all nine treatments and their putative gene targets were identified.
We found 3,187 animal-like target sites in the 3’UTRs of 12,858 mRNAs and 53 plantlike
target sites in 51,917 genes. Furthermore, we identified the core RNAi protein
machinery in Symbiodinium. Integration of smRNA and mRNA expression profiling
identified a variety of processes that could be under microRNA control, e.g. regulation of
translation, DNA modification, and chromatin silencing. Given that Symbiodinium seems
to have a paucity of transcription factors and differentially expressed genes, identification
and characterization of its smRNA repertoire establishes the possibility of a range of
gene regulatory mechanisms in dinoflagellates acting post-transcriptionally.
Date of Award | Jul 2013 |
---|
Original language | English (US) |
---|
Awarding Institution | - Biological, Environmental Sciences and Engineering
|
---|
Supervisor | Christian Voolstra (Supervisor) |
---|
- Symbiodinium
- microRNA
- small interfering RNA
- scleractinian coral
- dinoflagellate
- symbiont