CS 380 - GPU and GPGPU Programming
Lecture 1: Introduction

Markus Hadwiger, KAUST
Lecture Overview

Goals

• Learn GPU architecture and programming; both for graphics and for computing (GPGPU)
• Shading languages (GLSL, Cg, HLSL), compute APIs (CUDA, OpenCL, DirectCompute)

Time and location

• Monday + Thursday, 9:00 – 10:30, Building 9, Room 4137

Webpage:
http://faculty.kaust.edu.sa/sites/markushadwiger/Pages/CS380.aspx

Contact

• Markus Hadwiger: markus.hadwiger@kaust.edu.sa
• Peter Rautek (main contact assignments): peter.rautek@kaust.edu.sa
• Christopher Moore (program. questions): christopher.moore@kaust.edu.sa

Prerequisites

• C/C++ programming (!), basic computer graphics, basic linear algebra
Lecture Structure

Lectures

• Part 1: GPU Basics and Architecture (both: graphics, compute)
• Part 2: GPUs for Graphics
• Part 3: GPUs for Compute

Some lectures will be on research papers (both seminal and current)

Assignments

• 4 programming assignments
• Weekly reading assignments (required; also some optional)

Quizzes

• 6 quizzes, 30 min each, ~every second Thursday
 (tentative dates: Sep 14, Sep 28, Oct 12, Oct 26, Nov 9, Nov 23)
• From lectures and (required) reading assignments

Semester project + final presentations, but no mid-term/final exam!

Grading: 40% programming assignments; 30% semester project; 30% quizzes
Resources (1)

Textbooks

• GPUs for Graphics: OpenGL 4.0 Shading Language Cookbook, 2nd ed.
• GPU Computing / GPGPU: Programming Massively Parallel Processors, 2nd ed.
Resources (1)

Textbooks

- GPUs for Graphics: OpenGL 4.0 Shading Language Cookbook, 2nd ed.
Long list of links on course webpage:

http://faculty.kaust.edu.sa/sites/markushadwiger/Pages/CS380.aspx

- www.opengl.org
- www.gpgpu.org
- www.nvidia.com/cuda/
- www.khronos.org/registry/cl/
-...

Very nice resources for examples: GPU Gems books 1-3 (available online)
GPU Computing Gems, Vol. 1 + 2 (Emerald/Jade edition)
Resources (3)

OpenGL Programming Guide *(red book)*

http://www.opengl-redbook.com/

Computer graphics and OpenGL

Current edition: 9th
OpenGL 4.5
contains extended chapters on GLSL

Available in the KAUST library
also electronically
Resources (4)

OpenGL Shading Language (orange book)

Current edition: 3rd
OpenGL 3.1, GLSL 1.4
no geometry shaders

Available in the KAUST library
also electronically
CUDA by Example: An Introduction to General-Purpose GPU Programming, Jason Sanders, Edward Kandrot

See reference section of KAUST library
Syllabus (1)

GPU Basics and Architecture (~August, September)

- Introduction
- GPU architecture
- How shader cores work
- GPU shading and GPU compute APIs
 - General concepts and overview
 - Learn syntax details on your own!
 - GLSL book
 - CUDA book
 - Online resources, ...
Syllabus (2)

GPUs for Graphics (~October)

- GPU texturing, filtering
- GPU (texture) memory management
- GPU frame buffers
- Virtual texturing
Syllabus (3)

GPU Computing (~November)
- GPGPU, important parallel programming concepts
- CUDA memory access
- Reduction, scan
- Linear algebra on GPUs
- Combining graphics and compute
 - Display the results of computations
 - Interactive systems (fluid flow, ...)

Semester project presentations
Programming Assignments: Basics

4 assignments

- Based on C/C++, OpenGL, and CUDA

Organization

1. Explanation in readme, and during lecture (and Q&A sessions if required)
2. Get framework online (bitbucket+git)
3. Submit solution and report online (bitbucket+git) by submission deadline
4. Personal presentation after submission
Teaching Assistants:

• Peter Rautek (peter.rautek@kaust.edu.sa) – programming assignments; assignment presentations
 Office: Bldg 1, Room 2220

• Christopher Moore (christopher.moore@kaust.edu.sa) – programming-related questions
 Office: Bldg 1, Room 2101 (lab area)
Programming Assignments: People

Visual Computing Center Building 1

Christopher Moore office #2101
Markus Hadwiger office #2219
Peter Rautek office #2220

CS380 machines
entrance
1. Google, Stackoverflow, ...

2. CS380 Forum:

 piazza.com/kaust.edu.sa/fall2017/cs380

3. Contact us:
 • Peter Rautek: peter.rautek@kaust.edu.sa
 • Christopher Moore: christopher.moore@kaust.edu.sa
GPU programming comes in different flavors:

- Graphics: OpenGL, DirectX, Vulkan
- Compute: CUDA, OpenCL

In this course we will:

- Play with CUDA and OpenGL
- Wrap our heads around parallelism
- Learn the differences and commonalities of graphics and compute programming

Format:

- 4 Pre-specified programming assignments
- 1 Capstone (semester) project that you can define yourself
Programming Assignments: Where to Start

- Source code is hosted on bitbucket.org
- Register with your kaust.edu.sa email address (will give you unlimited plan – nice!)
- Go to the repo https://bitbucket.org/rautek/cs380-2017 (or simply search on bitbucket for cs380) and fork it
- Get a git client http://git-scm.com/downloads and clone your own repo
- Follow the readme text-file
- Do your changes in the source code for assignment 1, commit, and push (to your own repo)
- Contact Peter Rautek if you have problems or questions (peter.rautek@kaust.edu.sa)
Programming Assignment 1

Set up your development environment

- git (https://git-scm.com/downloads)
- Follow the readme and start coding

Query your graphics card for its capabilities (CUDA and OpenGL)
Programming Assignment 1 – Setup

- Programming
 - Query hardware capabilities (OpenGL and CUDA)
 - Instructions in readme.txt file
- Submission (via bitbucket)
 - Program
 - Short report (1-2 pages, pdf), including short explanation of program, problems and solutions, how to run it, screenshots, etc.
- Personal assessment
 - Meeting at Peter’s office (building 1, office 2220)
 - Max. 15 minutes, present program and source code
Programming Assignments: Grading

- Submission complete, code working for all the required features
- Documentation complete (report, but also source code comments!)
- Personal presentation
- Optional features, coding style, clean solution
- Every day of late submission reduces points by 10%
- No direct copies from the Internet!
 You have to understand what you program:
 your explanations during the presentations will be part of the grade!
Assignment #1:
 • Querying the GPU (OpenGL and CUDA) due Aug 27

----- Eid Break: Sep 3 – Sep 7 -----

Assignment #2:
 • Phong shading and procedural texturing (GLSL) due Sep 24

Assignment #3:
 • Image Processing with (a) GLSL, and (b) CUDA due Oct 15

Assignment #4:
 • Linear Algebra (CUDA) due Nov 5
Semester Project

• Choosing your own topic encouraged! (we will also suggest some topics)
 • Pick something that you think is really cool!
 • Can be completely graphics or completely computation, or both combined
 • Can be built on CS380 frameworks, NVIDIA OpenGL SDK, or CUDA SDK
• Write short (1-2 pages) project proposal by end of Sep (announced later)
 • Talk to us before you start writing! (content and complexity should fit the lecture)
• Submit semester project with report (deadline: Dec 7)
• Present semester project (we will schedule event in final exams week)
Reading Assignment #1 (until Aug 28)

Read (required):

- Orange book, chapter 1 (*Review of OpenGL Basics*)
- Orange book, chapter 2 (*Basics*)
Thank you.