CS 380 - GPU and GPGPU Programming
Lecture 1: Introduction

Markus Hadwiger, KAUST
Lecture Overview

Goals

• Learn GPU architecture and programming; both for graphics and for computing (GPGPU)
• Shading languages (GLSL, Cg, HLSL), compute APIs (CUDA, OpenCL, DirectCompute)

Time and location

• Sunday + Wednesday, 16:00 – 17:30, Building 9, Room 3223

Webpage:
http://faculty.kaust.edu.sa/sites/markushadwiger/Pages/CS380.aspx

Contact

• **Markus Hadwiger:** markus.hadwiger@kaust.edu.sa
• **Peter Rautek** (assignments): peter.rautek@kaust.edu.sa
• **Ronell Sicat** (assignments): ronell.sicat@kaust.edu.sa

Prerequisites

• **C/C++ programming** (!), basic computer graphics, basic linear algebra
Lecture Structure

Lectures

• Part 1: GPU Basics and Architecture (both: graphics, compute)
• Part 2: GPUs for Graphics
• Part 3: GPUs for Compute

Some lectures will be on research papers (both seminal and current)

Assignments

• 4 programming assignments
• Weekly reading assignments (required; also some optional)

Quizzes

• 6 quizzes, 30 min each, ~every second Sunday
 (tentative dates: Feb 17, Mar 3, Mar 17, Apr 7, Apr 21, May 5)
• From lectures and (required) reading assignments

Semester project + final presentations, but no mid-term/final exam!

Grading: 40% programming assignments; 30% semester project; 30% quizzes
Resources (1)

Textbooks

- GPUs for Graphics: OpenGL Shading Language, 3rd edition
- GPU Computing / GPGPU: Programming Massively Parallel Processors
Long list of links on course webpage:

http://faculty.kaust.edu.sa/sites/markushadwiger/Pages/CS380.aspx

• www.opengl.org
• www.gpgpu.org
• www.nvidia.com/cuda/
• www.khronos.org/registry/cl/
• ...

Very nice resources for examples: GPU Gems books 1-3 (available online)
GPU Computing Gems, Vol. 1 + 2 (Emerald/Jade edition)
Resources (3)

To brush up your computer graphics and OpenGL background:

www.opengl.org/documentation/red_book/

(current edition is 7th; OpenGL 3.0/3.1)

See reference section of KAUST library
Resources (4)

CUDA by Example: An Introduction to General-Purpose GPU Programming, Jason Sanders, Edward Kandrot

See reference section of KAUST library
Syllabus (1)

GPU Basics and Architecture (~February)

• Introduction
• GPU architecture
• How shader cores work
• GPU shading and GPU compute APIs
 – General concepts and overview
 – Learn syntax details on your own!
 – GLSL book
 – CUDA book
 – Online resources, ...
GPUs for Graphics (~March)

- GPU texturing, filtering
- GPU (texture) memory management
- GPU frame buffers
- Virtual texturing
Syllabus (3)

GPU Computing (~April, May)
 • GPGPU, important parallel programming concepts
 • CUDA memory access
 • Reduction, scan
 • Linear algebra on GPUs
 • Combining graphics and compute
 – Display the results of computations
 – Interactive systems (fluid flow, ...)

Semester project presentations
Programming Assignments: Basics

4 assignments

• Based on C/C++, OpenGL, and CUDA

Organization

1. Explanation during lecture (and Q&A sessions if required)
2. Get framework online (*bitbucket+git*)
3. Submit solution and report online (*bitbucket+git*) by submission deadline
4. Personal presentation after submission
Teaching Assistants:

• Peter Rautek (peter.rautek@kaust.edu.sa) – programming assignments; assignment presentations
 Office hours: Wednesday 15:00 – 16:00, Bldg 1, Room 2220

• Ronell Sicat (ronell.sicat@kaust.edu.sa) – programming assignments; programming-related questions
 Office hours: Sunday 15:00 – 16:00, Bldg 1, Room 2101 (lab area)

Help in programming assignments (in this order!):

1. Think about it, read about it, google it!
2. Ask other students/post in forum!
3. Ask TAs (Peter and Wito)
Programming Assignments: Places

GMSV
Building 1

lab-space
2106-WS17
2106-WS18

entrance

Ronnell Sicat
office #2101

Markus Hadwiger
office #2219

Peter Rautek
office #2220
Programming Assignments: Requirements

- Submit via *bitbucket+git* at the latest on day the assignment is due (code, libs, everything that is needed to run your program)

- Submission must include short report (2 pages, pdf), including short explanation of algorithms, your solution, problems, how to run it, screenshots

- Personal presentations (soon after submission), present your program live and explain source code (usually 10-15 min)
 - Sign up for presentation slot in advance; sign-up sheet on Peter’s office door, Bldg 1, Room 2220
 - Use your own laptop (preferred!) or test on lab machine to guarantee it runs!
Programming Assignments: Grading

- Submission complete, code working for all the required features
- Documentation complete (report, but also source code comments!)
- Personal presentation
- Optional features, coding style, clean solution
- Every day of late submission reduces points by 10%
- No direct copies from the Internet!
 You have to understand what you program:
 your explanations during the presentations will be part of the grade!
Programming Assignments: Schedule

Assignment #1:
 • Querying the GPU (OpenGL and CUDA)
 due Feb 10

Assignment #2:
 • Phong shading and procedural texturing (GLSL)
 due Mar 3

---- Spring Break: Mar. 28 – Apr. 5 ----

Assignment #3:
 • Image Processing with (a) GLSL, and (b) CUDA
 due Apr 7

Assignment #4:
 • Conjugate Gradient Linear Systems Solver (CUDA)
 due Apr 28
Programming Assignments: Where to Start

- Source code is hosted on bitbucket.org
- Register with your kaust.edu.sa email address (will give you unlimited plan – nice!)
- Go to the repo https://bitbucket.org/rautek/cs380-2013 (or simply search on bitbucket for cs380) and fork it
- Get a git client http://git-scm.com/downloads and clone your own repo
- Follow the readme text-file
- Do your changes in the source code for assignment 1, commit, and push (to your own repo)
Programming Assignment 1 – Setup

- Setup
 - git+bitbucket
 - Visual Studio 2010
 - CUDA 5.0

- Programming
 - Query hardware capabilities (OpenGL and CUDA)
 - Instructions in readme.txt file
Semester Project

• Choosing your own topic encouraged! (we can also suggest some topics)
 • Pick something that you think is really cool!
 • Can be completely graphics or completely computation, or both combined
 • Can be built on CS380 frameworks, NVIDIA OpenGL SDK, or CUDA SDK

• Write short (1-2 pages) project proposal until mid-March
 • Talk to us before you start writing! (content and complexity should fit the lecture)

• Write semester project report (May, before project presentations)
• Present semester project (final exams week in May [11-15])
Reading Assignment #1 (until Feb. 10)

Read (required):

• GLSL book, chapter 1 (Review of OpenGL Basics)
• GLSL book, chapter 2 (Basics)

Download:

• NVIDIA CUDA SDK
• NVIDIA Graphics/OpenGL SDK (10.52, 9.52 ← has more examples): http://developer.nvidia.com/nvidia-graphics-sdk-11

• Install, try out examples, browse code a bit to get a basic feel
• See what examples run on your hardware, and which don‘t
What Are GPUs?

Graphics Processing Units

But evolved toward

- Very flexible, massively parallel floating point co-processors
- But not entirely programmable!
- Fixed-function parts have definite advantages (e.g., texture filtering, z-buffering)

We will cover both perspectives

- GPUs for graphics
- GPU computing (GPGPU – general purpose computation on GPU)
Thank you.