Quiz #4: Apr. 10

Organization

• First 30 min of lecture
• No material (book, notes, ...) allowed

Content of questions

• Lectures (both actual lectures and slides)
• Reading assignments
• Programming assignments (algorithms, methods)
• Solve short practical examples
Reading Assignment #9 (until Apr. 14)

Read (required):

• Programming Massively Parallel Processors book, Chapter 5 (*CUDA Memories*)

• **CUDA C Programming Guide 5.0**
 Appendix F: Compute Capabilities

 Study the different memory access requirements for different compute capabilities
Assignment #3:
 • Image Processing with (a) GLSL, and (b) CUDA
 due Apr 7

Assignment #4:
 • Conjugate Gradient Linear Systems Solver (CUDA)
 due Apr 28
Stream Programming Abstraction

Let’s think about our problem in a new way

• Goal: SW programming model that matches today’s VLSI

Streams

• Collection of data records
• All data is expressed in streams

Kernels

• Inputs/outputs are streams
• Perform computation on streams
• Can be chained together

Courtesy John Owens
CUDA Highlights: Scatter

- CUDA provides generic DRAM memory addressing
 - Gather:

- And scatter: no longer limited to write one pixel

More programming flexibility
CUDA Highlights: On-Chip Shared Memory

- CUDA enables access to a parallel on-chip shared memory for efficient inter-thread data sharing.

Big memory bandwidth savings
Programming Model: Memory Spaces

- **Global Memory**
 - Read-write per-grid
 - Hundreds of MBs
 - Very slow (600 clocks)

- **Texture Memory**
 - Read-only per-grid
 - Hundreds of MBs
 - Slow first access, but cached
 - Built-in filtering, clamping

- **Constant Memory**

- **Shared! Memory**
 - Read-write per-block
 - 16 KB per block
 - Very fast (4 clocks)

- **Registers**
 - Unique per thread
Constants

- Immediate address constants
- Indexed address constants
- Constants stored in DRAM, and cached on chip
 - L1 per SM
- A constant value can be broadcast to all threads in a Warp
 - Extremely efficient way of accessing a value that is common for all threads in a block!
Constants

- Immediate address constants
- Indexed address constants
- Constants stored in DRAM, and cached on chip
 - L1 per SM
- A constant value can be broadcast to all threads in a Warp
 - Extremely efficient way of accessing a value that is common for all threads in a block!

```c
// specify as global variable
__device__ __constant__ float gpuGamma[2];
...

// copy gamma value to constant device memory
cudaMemcpyToSymbol(gpuGamma, &gamma, sizeof(float));

// access as global variable in kernel
res = gpuGamma[0] * threadIdx.x;
```
Shared Memory

- Each SM has 16 KB of Shared Memory
 - 16 banks of 32bit words
- CUDA uses Shared Memory as shared storage visible to all threads in a thread block
 - read and write access
- Not used explicitly for pixel shader programs
 - we dislike pixels talking to each other 😊

On Fermi/Kepler, there is a hardware-managed L1 cache in the same 64KB memory space as shared memory:

either 16KB shared + 48KB L1
or 48KB shared + 16KB L1

or 48 KB on Fermi/Kepler (organized in 32 banks)
Shared Memory Allocation

- 2 modes
- Static size within kernel
  ```c
  __shared__ float vec[256];
  ```

- Dynamic size when calling the kernel
  ```c
  // in main
  int VecSize = MAX_THREADS * sizeof(float4);
  vecMat<<< blockGrid, threadBlock, VecSize >>>( p1, p2, ...);

  // declare as extern within kernel
  extern __shared__ float vec[];
  ```
Vector-Matrix Multiplication
- data parallelism -

\[y = Mx \]
Vector-Matrix Multiplication V1

- Every thread computes a single output value in y
- Every thread computes the dot product between one line of M and x
Vector-Matrix Multiplication V1

- Every thread computes a single output $y[i]$
- Every thread computes the dot product between one line of M and x

![Diagram of vector and matrix multiplication]

Parallel08 – Memory Access

Hendrik Lensch and Robert Strzodka
Vector-Matrix Multiplication V1

- Every thread computes a single output $y[i]$
- Every thread computes the dot product between one line of M and x
Vector-Matrix Multiplication V1

- Every thread computes a single output $y[i]$
- Every thread computes the dot product between one line of M and x
- Computations totally independent
Setup

... // allocate memory
float* gpuMat, gpuVec, gpuResVec;
CUDA_SAFE_CALL(cudaMalloc((void**)&gpuMat, w*h * sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc((void**)&gpuVec, w * sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc((void**)&gpuResVec, h * sizeof(float)));
CUT_CHECK_ERROR("allocation failed\n");

// upload M and x
CUDA_SAFE_CALL(cudaMemcpy(gpuMat, hostMat, w*h * sizeof(float), cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpy(gpuVec, hostVec, w * sizeof(float), cudaMemcpyHostToDevice));

// compute the block and grid dimensions
dim3 threadBlock(MAX_THREADS, 1);
dim3 blockGrid(h / MAX_THREADS + 1, 1, 1);
vecMat1<<< blockGrid, threadBlock >>>(gpuResVec, gpuMat, gpuVec, w,h);
CUT_CHECK_ERROR("vecMat filter failed\n");
CUDA_SAFE_CALL(cudaThreadSynchronize());

// download result y
CUDA_SAFE_CALL(cudaMemcpy(hostResVec, gpuResVec, h * sizeof(float), cudaMemcpyDeviceToHost));
cudaFree(gpuMat); cudaFree(gpuVec); cudaFree(gpuResVec);
__global__ void vecMat1(float *dst, const float* _mat,
 const float* _v, int _w, int _h) {

 // row index the thread is operating on
 int i = blockIdx.x * blockDim.x + threadIdx.x;

 if (i < _h) {
 float res = 0.;

 // dot product of one line
 for (int j = 0; j < _w; ++j) {
 res += _mat[i*_w + j] * _v[j];
 }

 // write result to global memory
 dst[i] = res;
 }
}
Why is this slow?

- Problem is bandwidth limited (read)
- Each thread is accessing
 - w elements of M
 - w elements of x
 from global memory

- Total bandwidth: \(2 \times w \times h\)

- But all threads are accessing the same elements of x
- Load x into shared memory and reuse!
Vector-Matrix Multiplication
- using shared memory -

\[y = Mx \]
Vector-Matrix Multiplication V2

- Every thread uploads a couple of elements to shared memory
- Every thread computes the dot product between one line of M and x
Vector-Matrix Multiplication V2

- Every thread uploads a couple of elements to shared memory
- Every thread computes the dot product between one line of M and x
Vector-Matrix Multiplication V2

- Every thread uploads a couple of elements to shared memory
- Every thread computes the dot product between one line of M and x
Vector-Matrix Multiplication V2

- Every thread uploads a couple of elements to shared memory
- Every thread computes the dot product between one line of M and x
... // allocate memory
float* gpuMat, gpuVec, gpuResVec;
CUDA_SAFE_CALL(cudaMalloc((void**)&gpuMat, w*h* sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc((void**)&gpuVec, w * sizeof(float)));
CUDA_SAFE_CALL(cudaMalloc((void**)&gpuResVec, h * sizeof(float)));
CUT_CHECK_ERROR("allocation failed\n");

// upload M and x
CUDA_SAFE_CALL(cudaMemcpy(gpuMat, hostMat, w*h * sizeof(float), cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpy(gpuVec, hostVec, w * sizeof(float), cudaMemcpyHostToDevice));

// compute the block and grid dimensions
dim3 threadBlock(MAX_THREADS, 1);
dim3 blockGrid(h / MAX_THREADS + 1, 1, 1);
vecMat2<<blockGrid, threadBlock, w * sizeof(float)>>>(gpuResVec, gpuMat, gpuVec, w, h, w / MAX_THREADS);
CUT_CHECK_ERROR("vecMat filter failed\n");
CUDA_SAFE_CALL(cudaThreadSynchronize());

// download result y
CUDA_SAFE_CALL(cudaMemcpy(hostResVec, gpuResVec, h * sizeof(float), cudaMemcpyDeviceToHost));
cudaFree(gpuMat); cudaFree(gpuVec); cudaFree(gpuResVec);
__global__ void vecMat2(float *dst, const float* mat, const float* v, int _w, int _h, int nIter) {
 extern __shared__ float vec[];

 int i = blockIdx.x * blockDim.x + threadIdx.x;
 float res = 0.; int vOffs = 0;

 // load x into shared memory
 for (int iter = 0; iter < nIter; ++iter, vOffs += blockDim.x) {
 vec[vOffs + threadIdx.x] = v[vOffs + threadIdx.x];
 }

 // make sure all threads have written their parts
 __syncthreads();

 // now compute the dot product again
 // use elements of x loaded by other threads!
 if (i < _h) {
 for (int j = 0; j < _w; ++j) {
 res += mat[offs + j] * vec[j];
 }
 dst[i] = res;
 }
__global__ void vecMat2(float *dst, const float* _mat, const float* _v, int _w, int _h, int nIter) {
 extern __shared__ float vec[];

 int i = blockIdx.x * blockDim.x + threadIdx.x;
 float res = 0.; int vOffs = 0;

 // load x into shared memory
 for (int iter = 0; iter < nIter; ++iter, vOffs += blockDim.x) {
 vec[vOffs + threadIdx.x] = _v[vOffs + threadIdx.x];
 }

 // make sure all threads have written their parts
 __syncthreads();

 // now compute the dot product again
 // use elements of x loaded by other threads!
 if (i < _h) {
 for (int j = 0; j < _w; ++j) {
 res += _mat[offs + j] * vec[j];
 }
 _dst[i] = res;
 }
}
1. Global Memory Accesses
 - Memory coalescing
 - Cached memory access
Memory Layout of a Matrix in C
Memory Coalescing

- When accessing global memory, peak performance utilization occurs when all threads in a half warp (full warp on Fermi) access continuous memory locations.
- Requirements relaxed on >=1.2 devices; L1 cache on Fermi!

![Diagram showing memory coalescing](image-url)
Memory Layout of a Matrix in C

Access direction in Kernel code

<table>
<thead>
<tr>
<th>Time Period 1</th>
<th>Time Period 2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>T_2</td>
<td>T_3</td>
</tr>
<tr>
<td>$M_{0,0}$</td>
<td>$M_{1,0}$</td>
<td>$M_{2,0}$</td>
</tr>
</tbody>
</table>
Memory Layout of a Matrix in C

Access direction in Kernel code

Time Periods:
- **Time Period 1**
 - Access order: M_{0,0}, M_{1,0}, M_{2,0}, M_{3,0}, M_{0,1}, M_{1,1}, M_{2,1}, M_{3,1}, M_{0,2}, M_{1,2}, M_{2,2}, M_{3,2}, M_{0,3}, M_{1,3}, M_{2,3}, M_{3,3}

- **Time Period 2**
 - Access order: M_{0,0}, M_{1,0}, M_{2,0}, M_{3,0}, M_{0,1}, M_{1,1}, M_{2,1}, M_{3,1}, M_{0,2}, M_{1,2}, M_{2,2}, M_{3,2}, M_{0,3}, M_{1,3}, M_{2,3}, M_{3,3}

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE 498AL, University of Illinois, Urbana-Champaign
2. Shared Memory Accesses

- Banked memory access / bank conflicts
Parallel Memory Architecture

• In a parallel machine, many threads access memory
 – Therefore, memory is divided into banks
 – Essential to achieve high bandwidth

• Each bank can service one address per cycle
 – A memory can service as many simultaneous accesses as it has banks

• Multiple simultaneous accesses to a bank result in a bank conflict
 – Conflicting accesses are serialized
Bank Addressing Examples

- No Bank Conflicts
 - Linear addressing
 - stride == 1

- No Bank Conflicts
 - Random 1:1 Permutation
Bank Addressing Examples

- **2-way Bank Conflicts**
 - Linear addressing
 - stride == 2

- **8-way Bank Conflicts**
 - Linear addressing
 - stride == 8
How addresses map to banks on G80

- Each bank has a bandwidth of 32 bits per clock cycle
- Successive 32-bit words are assigned to successive banks
- G80 has 16 banks
 - So bank = address % 16
 - Same as the size of a half-warp
 - No bank conflicts between different half-warps, only within a single half-warp

Fermi has 32 banks, considers full warps instead of half warps!
Shared Memory Bank Conflicts

- Shared memory is as fast as registers if there are no bank conflicts

- The fast case:
 - If all threads of a half-warp access different banks, there is no bank conflict
 - If all threads of a half-warp access the identical address, there is no bank conflict (broadcast)

- The slow case:
 - Bank Conflict: multiple threads in the same half-warp access the same bank
 - Must serialize the accesses
 - Cost = max # of simultaneous accesses to a single bank

full warps instead of half warps on Fermi!
Thank you.

- Hendrik Lensch, Robert Strzodka