
CS 380 - GPU and GPGPU Programming
Lecture 14+15: Shading and Compute APIs 5

Markus Hadwiger, KAUST

2

Reading Assignment #8 (until April 9)

Read (required):

• Programming Massively Parallel Processors book,
Chapter 5 (CUDA Memories)

3

Reading Assignment #9 (until April 16)

Read (required):

• Interpolation for Polygon Texture Mapping and Shading,
Paul Heckbert and Henry Moreton

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7886

• MIP-Map Level Selection for Texture Mapping
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=765326

Read (optional):
• Frame buffer objects extension specification

http://www.opengl.org/registry/specs/ARB/framebuffer_object.txt

Example: Matrix Multiplication (1)

• Copy matrices to device; invoke kernel; copy result matrix
back to host

11

Example: Matrix Multiplication (2)

12

Example: Matrix Multiplication (3)

• Multiply matrix block-wise

• Set BLOCK_SIZE for efficient hardware
use, e.g., to 16 on current NVIDIA hw
(or 32 on Fermi)

• Maximize parallelism
– Launch as many threads

per block as block elements
– Each thread fetches one

element of block
– Perform row * column

dot products in parallel

13

Example: Matrix Multiplication (4)

14

__global__ void MatrixMul(float *matA, float *matB, float *matC, int w)
{

__shared__ float blockA[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float blockB[BLOCK_SIZE][BLOCK_SIZE];

int bx = blockIdx.x; int tx = threadIdx.x;
int by = blockIdx.y; int ty = threadIdx.y;

int col = bx * BLOCK_SIZE + tx;
int row = by * BLOCK_SIZE + ty;

float out = 0.0f;
for (int m = 0; m < w / BLOCK_SIZE; m++) {

blockA[ty][tx] = matA[row * w + m * BLOCK_SIZE + tx];
blockB[ty][tx] = matB[col + (m * BLOCK_SIZE + ty) * w];
__syncthreads();

for (int k = 0; k < BLOCK_SIZE; k++) {
out += blockA[ty][k] * blockB[k][tx];

}
__syncthreads();

}

matC[row * w + col] = out;
}

Thank you.

